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Abstract

We consider the classic open problem of whether every triangle has a periodic billiard path. While this has
been shown for rational-angled triangles [Masur86], the irrational case remains open. Finding periodic billiard
paths is an easy exercise for acute triangles, a long computer-aided case analysis when the maximum angle is at
most 100◦ [Schwartz08], and beyond that very little is known.

We examine the inequalities characterizing the set of triangles over which a given billiard path is periodic. We
prove polynomial upper bounds on their rate of change, and use these bounds to derive positive radii within
which a periodic billiard path must remain valid. We perform a computer search for periodic billiard paths on
randomly selected triangles over a fixed rational grid, and use the radius bounds to show (under a Bayesian model
with constant prior, assuming the uniformity of the selected grid points but otherwise unconditionally) that the
likelihood that ≥ 98% of all obtuse triangles admit a periodic billiard path is > 0.99999.

Background

A natural way to model a billiard path on a triangle is
as a straight line in the plane, along which the triangle
is repeatedly reflected. A billiard path is then periodic
if it ever reaches the same relative point on a triangle
with the same orientation (see Figure 1). This is equiv-
alent to the usual model, but is easier to visualize and
compute with, so we will use it exclusively.

The basis on which the problem can be systemati-
cally analyzed is this: each reflection of the triangle
through its edges changes the angle of the edges by
integer multiples of the triangle’s vertex angles. Induc-
tively, any sequence of reflections will yield a triangle
whose orientation differs by an integer linear combina-
tion of the vertex angles. If those angles are irrational,
then the only way such a combination can equal zero
– that is, the only way for two triangles to have the
same orientation – is if the coefficients in the linear
combination are also zero. That means that if a se-
quence of reflections produces a final triangle with the
same orientation as the first, then the same will be true
for all initial triangles, regardless of geometry. Since a
periodic billiard path must pass through the interior
of the reflection edges, and the vertices arising from
reflection are continuous functions of the original tri-
angle coordinates, any such path remains valid for all
triangles in an open neighborhood.

This is a constructive argument: given a periodic
billiard path on a particular triangle, one can derive
the algebraic constraints on the triangle vertices such
that a trajectory with the same combinatorial type
is still a periodic path. [Schwartz08] explored this
approach, exhibiting several paths and path families
which remain periodic over a relatively large range, the
union of which covered all triangles with maximum

(a) A periodic billiard path as a ray reflected off the triangle’s
boundary

(b) The same path visualized by reflecting triangles along a straight
line

Figure 1

angle less than 100◦.

Unfortunately, this approach doesn’t scale well: the
combinatorial length of a periodic path increases with
the maximum angle of the triangle. This increases the
computation cost for analysis and, more importantly,
dramatically decreases the radius within which the path
is periodic, meaning the number of different cases re-
quired to substantially increase the current 100◦ bound
is (probably) intractable.

Our Results

We derive new bounds on the derivatives of the con-
straint functions for periodic paths. Our bounds depend
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polynomially on the combinatorial length of the path
(i.e. the number of reflections), but not at all on the
path itself. This means that given any periodic path
on a triangle, and without any further analysis beyond
a single evaluation of the constraint functions, we im-
mediately have an explicit radius within which every
triangle is guaranteed to have a periodic billiard path.

We apply these bounds experimentally to derive for-
mal lower bounds on the density of triangles with peri-
odic billiard paths, by showing that for a large fraction
of triangles we can exhibit an explicit path.

Constraint bounds

An edge path E is a sequence E1...n of n edge in-
dices {1, 2, 3} through which a triangle T is to be re-
flected. TriE(T, i) is the ith triangle in the reflected
sequence when starting from T , defined inductively
as TriE(T, 0) = T and TriE(T, i) = the reflection of
TriE(T, i− 1) through edge Ei.

An edge path is closed if its final triangle TriE(T, n)
is generically (for all T ) of the same orientation as the

first TriE(T, 0). The offset
−→
OffE(T ) of a closed edge

path E on triangle T is the vector offset from the first
triangle TriE(T, 0) to the last one TriE(T, n).

Given a closed edge path, the question of whether it
admits a periodic billiard path on a particular triangle
can be answered by linear inequalities on the vertices
of the reflected triangles: does any path parallel to−→
OffE(T ) remain strictly inside the union of the reflected
triangles ∪iTriE(T, i) (as in Figure 1b)? We choose to
think of edge paths as starting from the base edge of
an initial oriented triangle and proceeding upward, so
we call the ordered vertices bounding the reflections
the left boundary and right boundary, and denote the
sequences by (Lefti) and (Righti). While their precise
coordinates depend on T , combinatorially they are a
function only of the edge path itself. In particular, the
length of each sequence depends only on E.

The constraint functions ψi,j for a closed edge path E
on a triangle T are polynomials computing (a positive
multiple of) the margin between the left and right
boundary vertices when moving along the path’s offset:

ψi,j(E, T ) = 〈
−→
OffE(T )⊥,Lefti − Rightj〉 (1)

where i and j range over the lengths of the left and

right boundary sets, and
−→
OffE(T )⊥ is the rotation of

−→
OffE(T ) by π/2. There is a periodic billiard path on T
through E if and only if ψi,j(E, T ) > 0 for all i and j.

Given E and a T with rational vertex coordinates,
the constraint functions can be evaluated explicitly to
determine if E yields a periodic billiard path on T .
Given only E, variables can be substituted for T ’s coor-
dinates to yield generic polynomial constraints that are

satisfied only on the set of triangle coordinates for which
E gives a periodic billiard path. This is, in outline, the
method underlying the results of [Schwartz08].

To simplify formulas in what follows we without loss
of generality consider triangles whose longest edge (the
base) lies on a fixed unit interval, so that any two
triangles differ only in the coordinates of their apex.
We then have:

Theorem 1. Given triangles T1, T2 with apexes a1, a2

and a closed edge path E of length n, let `min be the
length of the shortest edge of T1 and define ψi,j as in
Equation 1. Then∣∣ψi,j(E, T1)− ψi,j(E, T2)

∣∣ ≤ (n+ 2)3‖a1 − a2‖
8`min

(2)

for all i and j.

Corollary 1. Given triangle T1 with apex a1 having
a periodic billiard path along a closed edge path E of
length n, let `min be the length of the shortest edge of T1,
and set ψmin = mini,j [ψi,j(E, T )]. Then every triangle
T2 with apex a2 such that

‖a1 − a2‖ ≤
8`minψmin

(n+ 2)3
(3)

also has a periodic billiard path along E.

Given a periodic billard path on a triangle with
rational vertices, Corollary 1 gives an explicit radius
within which the apex of the triangle can be perturbed
while preserving the billiard path.

Experimental Results

We now wish to obtain a lower bound on the fraction of
obtuse triangles that admit periodic billiard paths. As
above, we set the longest edge to be a fixed unit-length
base. By symmetry, we also assume the shortest edge
is the one lying clockwise of the base. Our problem
space is thus the set of possible apexes within a radius-
1/2 quarter-circle. With this parameterization, the
“fraction” of obtuse triangles with periodic paths is
taken to mean the relative measure within that quarter-
circle of the set of apexes admitting a periodic path.

Our approach is to fix a rational grid covering the
problem space and select apexes uniformly at random
from the grid, then search for periodic billiard paths for
the chosen apexes. If a path is found, and Corollary 1
shows that it remains valid up to a radius larger than
the grid spacing, then all the triangles nearest to that
grid point are guaranteed to have periodic billiard paths,
and we call that apex a success. A high rate of success
gives us a Bayesian lower bound on the probability that
in fact a high proportion of all obtuse triangles admit
periodic billiard paths.
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Grid spacing 2× 10−14

Apex count 2500
Success count 2479

Path length

Min 14
Max 28572
Avg 288.1

Path validity radius

Min 1.45× 10−14

Max 1.3× 10−3

Mult. Avg 8.6× 10−7

Table 1: Experimental results

Once a periodic path is found, it is easy to indepen-
dently verify its correctness and radius, so the proba-
bilities we derive are conditioned only on the source of
randomness used to generate the apex set. We used
libbsd’s arc4random running on Ubuntu Linux 17.04,
which we consider robust enough for problems of this
nature, but it would be straightforward to reproduce
the experiment using any desired source.

Our numeric results are in Table 1, with a scatter
plot in Figure 2. Given the preceding, we consider this
to be strong empirical evidence for the assertion that
most obtuse triangles admit periodic billiard paths.
Specifically, if we assume the uniformity of our test
coordinates and compute the conditional probability of
the success rate we have:

Confidence Bound 1. Assuming a constant prior on
the fraction of obtuse triangles that admit a periodic
billiard path, and given an experimental outcome at
least as good as the one in Table 1, the likelihood that
≥ 98% of obtuse triangles admit a periodic billiard path
is > 0.99999.

Both the likelihood and the proportion of triangles
may be readily increased by repeating the experiment
with a higher trial count and search depth.

Proof Sketch

We now outline the proof of Theorem 1. Set T = T1,
a = a1. As above, let (Lefti) and (Righti) denote the
left and right boundaries of T ’s reflections along E.

If there is a periodic billiard path, it must lie parallel

to the edge path’s offset
−→
OffE(T ) = Leftfinal − Left0.

This means it lies perpendicular to
−→
OffE(T )⊥, so given

points p1 and p2 we can measure their mutual dis-
tance orthogonal to the offset via the dot product

Figure 2: A scatter plot of the trial outcomes. Successful
points denote a cyclic billiard path that is valid
up to a positive radius greater than the spacing
of the apex grid.

〈
−→
OffE(T )⊥, p2 − p1〉, which is positive if and only if
p2 lies to the left of p1 when traveling in the direction

of
−→
OffE(t). From this we get the constraint functions

ψi,j of Equation 1.
Let us telescope the boundary representation of the

offset:

−→
OffE(T ) = Leftfinal − Left0

=

final∑
i=1

(Lefti − Lefti−1)
(4)

The elements of this sum are edge vectors along the
boundary. Focusing on these edges, we define:

−−→
Lefti = Lefti − Lefti−1

−−−→
Righti = Righti − Righti−1

(5)

Every boundary vertex can then be expressed as a sum
of edge vectors from the first points:

Lefti = Left0 +
∑
j≤i

−−→
Leftj

Righti = Right0 +
∑
j≤i

−−−→
Rightj

(6)

Since the operation ⊥ is linear, it commutes with this
form, so we also have:

−→
OffE(T )⊥ =

∑
i

−−→
Left⊥i =

∑
i

−−−→
Right⊥i (7)
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Combining these gives us the following expression for
the constraint functions:

ψi,j(E, T ) =

〈∑
k

−−→
Left⊥k ,

∑
k≤i

−−→
Leftk

〉

+

〈∑
k

−−−→
Right⊥k ,

∑
k≤j

−−−→
Rightk

〉 (8)

This suggests many simplifications using the fact that
the inner product of a vector with its orthogonal is zero.
All we will use for now is that (since both i and j are
bounded by the number of reflections n) we can expand
both sides of the inner products by distributivity into
a sum

ψi,j(E, T ) =

N∑
k

〈v⊥k , wk〉 (9)

where the vk, wk are elements of
−−→
Left or

−−−→
Right and N

is at most (n+ 2)2/4. This is not completely trivial: an
n2/2 bound is immediate, but the extra 1/2 factor is
obtained by more careful analysis of path length, which
we omit here.

For the rest, we can rewrite Equation 9 in angle form:

ψi,j(E, T ) =

N∑
k

‖vk‖‖wk‖ cos(θk) (10)

where θk is the angle between v⊥k and wk. Recall that
the angle of edges produced by repeated reflection varies
by integer combinations of the triangle’s vertex angles
α{1,2,3}, so θk = π/2 +

∑
i ck,iαi for integers (ck,i).

Induction shows the difference in any two edge angles
is at most n/2 individual rotations, so we may choose∑

i

∣∣ck,i∣∣ ≤ n/2.

Now vary the apex a by an infinitesimal offset
−−→
d(a),

and let d(r) =
∥∥∥−−→d(a)

∥∥∥ be the (positive) infinitesimal

change in distance from a. Let d(αi) be the change in
angle i of T , and let d(α)max be the largest-magnitude
change in any angle of T . Then the change of angle θk
can also be bounded:

∣∣d(θk)
∣∣ ≤ n

∣∣d(α)max

∣∣
2

(11)

by the coefficient bound above.

Either of the base angles have their variation
∣∣d(αi)

∣∣
bounded by d(r)

`min
, so the change in the apex angle

∣∣d(α3)
∣∣

is at most 2d(r)
`min

. Substituting this for d(α)max gives:

∣∣d(θk)
∣∣ ≤ nd(r)

`min
(12)

We now differentiate Equation 10 and substitute

these inequalities, obtaining:

d(ψi,j) ≤ d(r)

(
n+ 2

`min

)(
(n+ 2)2

4

)

=
d(r)(n+ 2)3

4`min

(13)

Again there is a missing factor of 1/2 in this argument.
The 8 in the denominator in the full theorem comes
from rewriting the preceding expressions to omit the
apex angle α3. This can be done without breaking any
of the bounds, but it requires lengthier bookkeeping,
so we again omit it here.

Conclusion

Our results give the first quantitative empirical evidence
that a high proportion of obtuse triangles have periodic
billiard paths. Though our methods can’t extend to the
full conjecture that all triangles do, some improvements
and extensions still suggest themselves:

• Our experiments have yielded a larger and more
diverse set of example billiard paths than was
previously available. Examination of these paths
reveal common structures that in some cases are
amenable to analysis; exploring these might allow
better heuristics for finding periodic paths, or (if
one is optimistic) even unconditional algorithms
for some classes of triangles.

• Observations during testing lead us to believe that
the remaining failure cases in our dataset are lim-
ited by the grid density we chose: most of them
have periodic billiard paths whose radius is too
low. A denser grid, or one that grew progressively
denser as it approached the base, would proba-
bly have a greater success rate for very narrow
triangles.

• Our heuristic for finding periodic billiard paths was
relatively naive, essentially just testing random
vectors from a promising distribution. While this
was enough to succeed on most inputs, it seems
likely that more principled selection would do even
better.
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